SIM-AM 2025

Thermographic Methods for In-situ Monitoring of Metal-based Additive Manufacturing Processes

  • Breese, Philipp Peter (BAM)
  • Oster, Simon (BAM)
  • Walter, Tina (BAM)
  • Hilberg, Alec (BAM)
  • Altenburg, Simon J (BAM)

Please login to view abstract download link

Additive manufacturing (AM) with metals creates new, exciting opportunities for industrial applications. Especially industries with high relevance for the future like transport and energy benefit from optimized designs and novel materials. However, a reliable in-situ quality assurance for metal AM is still missing while process optimization is slow. This directly hinders the huge potential of metal AM technologies. A promising method to counteract this issue is the investigation of the emitted thermal radiation. It is optimal for monitoring and understanding the thermal history of the high-temperature AM process. The thermal history holds virtually all information about the properties and the quality of the manufactured components. The thermal information is also highly valuable for tuning and validating numerical simulations to gather further insights into the process. Despite this importance, the usage of thermal radiation in commercial AM machines is only marginal (like simple pyrometry or long-time exposure for optical tomography (OT) at a single wavelength). Based on this deficit and potential, this work gives an overview of the research in division “8.3 Thermographic Methods” at the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin, Germany. Different wavelengths of the thermal radiation are investigated: the visible range (VIS), the short-wave infrared (SWIR), and the mid-wave infrared (MWIR) with their respective optimal field of application. Focus lies on laser powder bed fusion of metals (PBF-LB/M), but directed energy deposition with laser beam (DED-LB/M) is investigated as well. The presented research is performed not only on commercial AM machines, but also on an in-house developed PBF-LB/M research system specifically designed for sensor testing. This ensures an exciting mélange of applied research for industrial applications, and fundamental research for process understanding and validation. Therefore, a crucial contribution to industrial and scientific insights of metal AM is given.